dropClust: Efficient clustering of ultra-large scRNA-seq data

Debajyoti Sinha, Akhilesh Kumar, Himanshu Kumar, Sanghamitra Bandyopadhyay, Debarka Sengupta, Nucleic Acids Research 46 (6) (2018).
Full text
Pubmed
DOI
Source code
Share
tweet

Abstract

Droplet based single cell transcriptomics has recently enabled parallel screening of tens of thousands of single cells. Clustering methods that scale for such high dimensional data without compromising accuracy are scarce. We exploit Locality Sensitive Hashing, an approximate nearest neighbour search technique to develop a de novo clustering algorithm for large-scale single cell data. On a number of real datasets, dropClust outperformed the existing best practice methods in terms of execution time, clustering accuracy and detectability of minor cell sub-types.